extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC10).1C24 = C22xD4:2D5 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).1C2^4 | 320,1613 |
(C2xC10).2C24 = C2xD5xC4oD4 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | | (C2xC10).2C2^4 | 320,1618 |
(C2xC10).3C24 = C2xD4:8D10 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | | (C2xC10).3C2^4 | 320,1619 |
(C2xC10).4C24 = C2xD4.10D10 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 160 | | (C2xC10).4C2^4 | 320,1620 |
(C2xC10).5C24 = C10.C25 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).5C2^4 | 320,1621 |
(C2xC10).6C24 = D5x2+ 1+4 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 40 | 8+ | (C2xC10).6C2^4 | 320,1622 |
(C2xC10).7C24 = D20.37C23 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | 8- | (C2xC10).7C2^4 | 320,1623 |
(C2xC10).8C24 = D5x2- 1+4 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | 8- | (C2xC10).8C2^4 | 320,1624 |
(C2xC10).9C24 = D20.39C23 | φ: C24/C22 → C22 ⊆ Aut C2xC10 | 80 | 8+ | (C2xC10).9C2^4 | 320,1625 |
(C2xC10).10C24 = C5xC2.C25 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | 4 | (C2xC10).10C2^4 | 320,1634 |
(C2xC10).11C24 = C2xC4xDic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).11C2^4 | 320,1139 |
(C2xC10).12C24 = C2xC20:2Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).12C2^4 | 320,1140 |
(C2xC10).13C24 = C2xC20.6Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).13C2^4 | 320,1141 |
(C2xC10).14C24 = C42.274D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).14C2^4 | 320,1142 |
(C2xC10).15C24 = D5xC2xC42 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).15C2^4 | 320,1143 |
(C2xC10).16C24 = C2xC42:D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).16C2^4 | 320,1144 |
(C2xC10).17C24 = C2xC4xD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).17C2^4 | 320,1145 |
(C2xC10).18C24 = C4xC4oD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).18C2^4 | 320,1146 |
(C2xC10).19C24 = C2xC20:4D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).19C2^4 | 320,1147 |
(C2xC10).20C24 = C2xC4.D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).20C2^4 | 320,1148 |
(C2xC10).21C24 = C42.276D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).21C2^4 | 320,1149 |
(C2xC10).22C24 = C2xC42:2D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).22C2^4 | 320,1150 |
(C2xC10).23C24 = C42.277D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).23C2^4 | 320,1151 |
(C2xC10).24C24 = C2xC23.11D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).24C2^4 | 320,1152 |
(C2xC10).25C24 = C2xDic5.14D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).25C2^4 | 320,1153 |
(C2xC10).26C24 = C2xC23.D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).26C2^4 | 320,1154 |
(C2xC10).27C24 = C23:2Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).27C2^4 | 320,1155 |
(C2xC10).28C24 = C2xD5xC22:C4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).28C2^4 | 320,1156 |
(C2xC10).29C24 = C2xDic5:4D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).29C2^4 | 320,1157 |
(C2xC10).30C24 = C24.24D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).30C2^4 | 320,1158 |
(C2xC10).31C24 = C2xC22:D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).31C2^4 | 320,1159 |
(C2xC10).32C24 = C2xD10.12D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).32C2^4 | 320,1160 |
(C2xC10).33C24 = C2xD10:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).33C2^4 | 320,1161 |
(C2xC10).34C24 = C24.27D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).34C2^4 | 320,1162 |
(C2xC10).35C24 = C2xDic5.5D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).35C2^4 | 320,1163 |
(C2xC10).36C24 = C2xC22.D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).36C2^4 | 320,1164 |
(C2xC10).37C24 = C23:3D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).37C2^4 | 320,1165 |
(C2xC10).38C24 = C24.30D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).38C2^4 | 320,1166 |
(C2xC10).39C24 = C24.31D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).39C2^4 | 320,1167 |
(C2xC10).40C24 = C2xDic5:3Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).40C2^4 | 320,1168 |
(C2xC10).41C24 = C2xC20:Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).41C2^4 | 320,1169 |
(C2xC10).42C24 = C2xDic5.Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).42C2^4 | 320,1170 |
(C2xC10).43C24 = C2xC4.Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).43C2^4 | 320,1171 |
(C2xC10).44C24 = C10.12- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).44C2^4 | 320,1172 |
(C2xC10).45C24 = C2xD5xC4:C4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).45C2^4 | 320,1173 |
(C2xC10).46C24 = C2xC4:C4:7D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).46C2^4 | 320,1174 |
(C2xC10).47C24 = C2xD20:8C4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).47C2^4 | 320,1175 |
(C2xC10).48C24 = C10.82+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).48C2^4 | 320,1176 |
(C2xC10).49C24 = C2xD10.13D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).49C2^4 | 320,1177 |
(C2xC10).50C24 = C2xC4:D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).50C2^4 | 320,1178 |
(C2xC10).51C24 = C10.2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).51C2^4 | 320,1179 |
(C2xC10).52C24 = C2xD10:Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).52C2^4 | 320,1180 |
(C2xC10).53C24 = C2xD10:2Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).53C2^4 | 320,1181 |
(C2xC10).54C24 = C10.2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).54C2^4 | 320,1182 |
(C2xC10).55C24 = C10.102+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).55C2^4 | 320,1183 |
(C2xC10).56C24 = C2xC4:C4:D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).56C2^4 | 320,1184 |
(C2xC10).57C24 = C10.52- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).57C2^4 | 320,1185 |
(C2xC10).58C24 = C10.112+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).58C2^4 | 320,1186 |
(C2xC10).59C24 = C10.62- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).59C2^4 | 320,1187 |
(C2xC10).60C24 = C42.87D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).60C2^4 | 320,1188 |
(C2xC10).61C24 = C42.88D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).61C2^4 | 320,1189 |
(C2xC10).62C24 = C42.89D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).62C2^4 | 320,1190 |
(C2xC10).63C24 = C42.90D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).63C2^4 | 320,1191 |
(C2xC10).64C24 = D5xC42:C2 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).64C2^4 | 320,1192 |
(C2xC10).65C24 = C42:7D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).65C2^4 | 320,1193 |
(C2xC10).66C24 = C42.188D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).66C2^4 | 320,1194 |
(C2xC10).67C24 = C42.91D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).67C2^4 | 320,1195 |
(C2xC10).68C24 = C42:8D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).68C2^4 | 320,1196 |
(C2xC10).69C24 = C42:9D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).69C2^4 | 320,1197 |
(C2xC10).70C24 = C42.92D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).70C2^4 | 320,1198 |
(C2xC10).71C24 = C42:10D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).71C2^4 | 320,1199 |
(C2xC10).72C24 = C42.93D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).72C2^4 | 320,1200 |
(C2xC10).73C24 = C42.94D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).73C2^4 | 320,1201 |
(C2xC10).74C24 = C42.95D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).74C2^4 | 320,1202 |
(C2xC10).75C24 = C42.96D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).75C2^4 | 320,1203 |
(C2xC10).76C24 = C42.97D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).76C2^4 | 320,1204 |
(C2xC10).77C24 = C42.98D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).77C2^4 | 320,1205 |
(C2xC10).78C24 = C42.99D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).78C2^4 | 320,1206 |
(C2xC10).79C24 = C42.100D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).79C2^4 | 320,1207 |
(C2xC10).80C24 = C4xD4:2D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).80C2^4 | 320,1208 |
(C2xC10).81C24 = D4xDic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).81C2^4 | 320,1209 |
(C2xC10).82C24 = C42.102D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).82C2^4 | 320,1210 |
(C2xC10).83C24 = D4:5Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).83C2^4 | 320,1211 |
(C2xC10).84C24 = C42.104D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).84C2^4 | 320,1212 |
(C2xC10).85C24 = C42.105D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).85C2^4 | 320,1213 |
(C2xC10).86C24 = C42.106D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).86C2^4 | 320,1214 |
(C2xC10).87C24 = D4:6Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).87C2^4 | 320,1215 |
(C2xC10).88C24 = C4xD4xD5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).88C2^4 | 320,1216 |
(C2xC10).89C24 = C42:11D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).89C2^4 | 320,1217 |
(C2xC10).90C24 = C42.108D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).90C2^4 | 320,1218 |
(C2xC10).91C24 = C42:12D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).91C2^4 | 320,1219 |
(C2xC10).92C24 = C42.228D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).92C2^4 | 320,1220 |
(C2xC10).93C24 = D4xD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).93C2^4 | 320,1221 |
(C2xC10).94C24 = D20:23D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).94C2^4 | 320,1222 |
(C2xC10).95C24 = D20:24D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).95C2^4 | 320,1223 |
(C2xC10).96C24 = Dic10:23D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).96C2^4 | 320,1224 |
(C2xC10).97C24 = Dic10:24D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).97C2^4 | 320,1225 |
(C2xC10).98C24 = D4:5D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).98C2^4 | 320,1226 |
(C2xC10).99C24 = D4:6D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).99C2^4 | 320,1227 |
(C2xC10).100C24 = C42:16D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).100C2^4 | 320,1228 |
(C2xC10).101C24 = C42.229D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).101C2^4 | 320,1229 |
(C2xC10).102C24 = C42.113D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).102C2^4 | 320,1230 |
(C2xC10).103C24 = C42.114D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).103C2^4 | 320,1231 |
(C2xC10).104C24 = C42:17D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).104C2^4 | 320,1232 |
(C2xC10).105C24 = C42.115D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).105C2^4 | 320,1233 |
(C2xC10).106C24 = C42.116D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).106C2^4 | 320,1234 |
(C2xC10).107C24 = C42.117D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).107C2^4 | 320,1235 |
(C2xC10).108C24 = C42.118D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).108C2^4 | 320,1236 |
(C2xC10).109C24 = C42.119D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).109C2^4 | 320,1237 |
(C2xC10).110C24 = Q8xDic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).110C2^4 | 320,1238 |
(C2xC10).111C24 = Dic10:10Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).111C2^4 | 320,1239 |
(C2xC10).112C24 = C42.122D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).112C2^4 | 320,1240 |
(C2xC10).113C24 = Q8:5Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).113C2^4 | 320,1241 |
(C2xC10).114C24 = Q8:6Dic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).114C2^4 | 320,1242 |
(C2xC10).115C24 = C4xQ8xD5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).115C2^4 | 320,1243 |
(C2xC10).116C24 = C42.125D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).116C2^4 | 320,1244 |
(C2xC10).117C24 = C4xQ8:2D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).117C2^4 | 320,1245 |
(C2xC10).118C24 = C42.126D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).118C2^4 | 320,1246 |
(C2xC10).119C24 = Q8xD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).119C2^4 | 320,1247 |
(C2xC10).120C24 = Q8:5D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).120C2^4 | 320,1248 |
(C2xC10).121C24 = Q8:6D20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).121C2^4 | 320,1249 |
(C2xC10).122C24 = C42.232D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).122C2^4 | 320,1250 |
(C2xC10).123C24 = D20:10Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).123C2^4 | 320,1251 |
(C2xC10).124C24 = C42.131D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).124C2^4 | 320,1252 |
(C2xC10).125C24 = C42.132D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).125C2^4 | 320,1253 |
(C2xC10).126C24 = C42.133D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).126C2^4 | 320,1254 |
(C2xC10).127C24 = C42.134D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).127C2^4 | 320,1255 |
(C2xC10).128C24 = C42.135D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).128C2^4 | 320,1256 |
(C2xC10).129C24 = C42.136D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).129C2^4 | 320,1257 |
(C2xC10).130C24 = C24.56D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).130C2^4 | 320,1258 |
(C2xC10).131C24 = C24.32D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).131C2^4 | 320,1259 |
(C2xC10).132C24 = D5xC22wrC2 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 40 | | (C2xC10).132C2^4 | 320,1260 |
(C2xC10).133C24 = C24:3D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).133C2^4 | 320,1261 |
(C2xC10).134C24 = C24:4D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).134C2^4 | 320,1262 |
(C2xC10).135C24 = C24.33D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).135C2^4 | 320,1263 |
(C2xC10).136C24 = C24.34D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).136C2^4 | 320,1264 |
(C2xC10).137C24 = C24.35D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).137C2^4 | 320,1265 |
(C2xC10).138C24 = C24:5D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).138C2^4 | 320,1266 |
(C2xC10).139C24 = C24.36D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).139C2^4 | 320,1267 |
(C2xC10).140C24 = C20:(C4oD4) | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).140C2^4 | 320,1268 |
(C2xC10).141C24 = C10.682- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).141C2^4 | 320,1269 |
(C2xC10).142C24 = Dic10:19D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).142C2^4 | 320,1270 |
(C2xC10).143C24 = Dic10:20D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).143C2^4 | 320,1271 |
(C2xC10).144C24 = C4:C4.178D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).144C2^4 | 320,1272 |
(C2xC10).145C24 = C10.342+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).145C2^4 | 320,1273 |
(C2xC10).146C24 = C10.352+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).146C2^4 | 320,1274 |
(C2xC10).147C24 = C10.362+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).147C2^4 | 320,1275 |
(C2xC10).148C24 = D5xC4:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).148C2^4 | 320,1276 |
(C2xC10).149C24 = C10.372+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).149C2^4 | 320,1277 |
(C2xC10).150C24 = C4:C4:21D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).150C2^4 | 320,1278 |
(C2xC10).151C24 = C10.382+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).151C2^4 | 320,1279 |
(C2xC10).152C24 = C10.392+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).152C2^4 | 320,1280 |
(C2xC10).153C24 = D20:19D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).153C2^4 | 320,1281 |
(C2xC10).154C24 = C10.402+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).154C2^4 | 320,1282 |
(C2xC10).155C24 = C10.732- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).155C2^4 | 320,1283 |
(C2xC10).156C24 = D20:20D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).156C2^4 | 320,1284 |
(C2xC10).157C24 = C10.422+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).157C2^4 | 320,1285 |
(C2xC10).158C24 = C10.432+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).158C2^4 | 320,1286 |
(C2xC10).159C24 = C10.442+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).159C2^4 | 320,1287 |
(C2xC10).160C24 = C10.452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).160C2^4 | 320,1288 |
(C2xC10).161C24 = C10.462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).161C2^4 | 320,1289 |
(C2xC10).162C24 = C10.1152+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).162C2^4 | 320,1290 |
(C2xC10).163C24 = C10.472+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).163C2^4 | 320,1291 |
(C2xC10).164C24 = C10.482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).164C2^4 | 320,1292 |
(C2xC10).165C24 = C10.742- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).165C2^4 | 320,1293 |
(C2xC10).166C24 = (Q8xDic5):C2 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).166C2^4 | 320,1294 |
(C2xC10).167C24 = C10.502+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).167C2^4 | 320,1295 |
(C2xC10).168C24 = C22:Q8:25D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).168C2^4 | 320,1296 |
(C2xC10).169C24 = C10.152- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).169C2^4 | 320,1297 |
(C2xC10).170C24 = D5xC22:Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).170C2^4 | 320,1298 |
(C2xC10).171C24 = C4:C4:26D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).171C2^4 | 320,1299 |
(C2xC10).172C24 = C10.162- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).172C2^4 | 320,1300 |
(C2xC10).173C24 = C10.172- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).173C2^4 | 320,1301 |
(C2xC10).174C24 = D20:21D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).174C2^4 | 320,1302 |
(C2xC10).175C24 = D20:22D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).175C2^4 | 320,1303 |
(C2xC10).176C24 = Dic10:21D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).176C2^4 | 320,1304 |
(C2xC10).177C24 = Dic10:22D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).177C2^4 | 320,1305 |
(C2xC10).178C24 = C10.512+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).178C2^4 | 320,1306 |
(C2xC10).179C24 = C10.1182+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).179C2^4 | 320,1307 |
(C2xC10).180C24 = C10.522+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).180C2^4 | 320,1308 |
(C2xC10).181C24 = C10.532+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).181C2^4 | 320,1309 |
(C2xC10).182C24 = C10.202- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).182C2^4 | 320,1310 |
(C2xC10).183C24 = C10.212- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).183C2^4 | 320,1311 |
(C2xC10).184C24 = C10.222- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).184C2^4 | 320,1312 |
(C2xC10).185C24 = C10.232- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).185C2^4 | 320,1313 |
(C2xC10).186C24 = C10.772- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).186C2^4 | 320,1314 |
(C2xC10).187C24 = C10.242- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).187C2^4 | 320,1315 |
(C2xC10).188C24 = C10.562+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).188C2^4 | 320,1316 |
(C2xC10).189C24 = C10.572+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).189C2^4 | 320,1317 |
(C2xC10).190C24 = C10.582+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).190C2^4 | 320,1318 |
(C2xC10).191C24 = C10.262- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).191C2^4 | 320,1319 |
(C2xC10).192C24 = C10.792- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).192C2^4 | 320,1320 |
(C2xC10).193C24 = C4:C4.197D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).193C2^4 | 320,1321 |
(C2xC10).194C24 = C10.802- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).194C2^4 | 320,1322 |
(C2xC10).195C24 = C10.812- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).195C2^4 | 320,1323 |
(C2xC10).196C24 = D5xC22.D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).196C2^4 | 320,1324 |
(C2xC10).197C24 = C10.1202+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).197C2^4 | 320,1325 |
(C2xC10).198C24 = C10.1212+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).198C2^4 | 320,1326 |
(C2xC10).199C24 = C10.822- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).199C2^4 | 320,1327 |
(C2xC10).200C24 = C4:C4:28D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).200C2^4 | 320,1328 |
(C2xC10).201C24 = C10.612+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).201C2^4 | 320,1329 |
(C2xC10).202C24 = C10.1222+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).202C2^4 | 320,1330 |
(C2xC10).203C24 = C10.622+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).203C2^4 | 320,1331 |
(C2xC10).204C24 = C10.632+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).204C2^4 | 320,1332 |
(C2xC10).205C24 = C10.642+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).205C2^4 | 320,1333 |
(C2xC10).206C24 = C10.842- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).206C2^4 | 320,1334 |
(C2xC10).207C24 = C10.662+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).207C2^4 | 320,1335 |
(C2xC10).208C24 = C10.672+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).208C2^4 | 320,1336 |
(C2xC10).209C24 = C10.852- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).209C2^4 | 320,1337 |
(C2xC10).210C24 = C10.682+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).210C2^4 | 320,1338 |
(C2xC10).211C24 = C10.692+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).211C2^4 | 320,1339 |
(C2xC10).212C24 = C42.233D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).212C2^4 | 320,1340 |
(C2xC10).213C24 = C42.137D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).213C2^4 | 320,1341 |
(C2xC10).214C24 = C42.138D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).214C2^4 | 320,1342 |
(C2xC10).215C24 = C42.139D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).215C2^4 | 320,1343 |
(C2xC10).216C24 = C42.140D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).216C2^4 | 320,1344 |
(C2xC10).217C24 = D5xC4.4D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).217C2^4 | 320,1345 |
(C2xC10).218C24 = C42:18D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).218C2^4 | 320,1346 |
(C2xC10).219C24 = C42.141D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).219C2^4 | 320,1347 |
(C2xC10).220C24 = D20:10D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).220C2^4 | 320,1348 |
(C2xC10).221C24 = Dic10:10D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).221C2^4 | 320,1349 |
(C2xC10).222C24 = C42:20D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).222C2^4 | 320,1350 |
(C2xC10).223C24 = C42:21D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).223C2^4 | 320,1351 |
(C2xC10).224C24 = C42.234D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).224C2^4 | 320,1352 |
(C2xC10).225C24 = C42.143D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).225C2^4 | 320,1353 |
(C2xC10).226C24 = C42.144D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).226C2^4 | 320,1354 |
(C2xC10).227C24 = C42:22D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).227C2^4 | 320,1355 |
(C2xC10).228C24 = C42.145D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).228C2^4 | 320,1356 |
(C2xC10).229C24 = Dic10:7Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).229C2^4 | 320,1357 |
(C2xC10).230C24 = C42.147D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).230C2^4 | 320,1358 |
(C2xC10).231C24 = D5xC42.C2 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).231C2^4 | 320,1359 |
(C2xC10).232C24 = C42.236D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).232C2^4 | 320,1360 |
(C2xC10).233C24 = C42.148D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).233C2^4 | 320,1361 |
(C2xC10).234C24 = D20:7Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).234C2^4 | 320,1362 |
(C2xC10).235C24 = C42.237D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).235C2^4 | 320,1363 |
(C2xC10).236C24 = C42.150D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).236C2^4 | 320,1364 |
(C2xC10).237C24 = C42.151D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).237C2^4 | 320,1365 |
(C2xC10).238C24 = C42.152D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).238C2^4 | 320,1366 |
(C2xC10).239C24 = C42.153D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).239C2^4 | 320,1367 |
(C2xC10).240C24 = C42.154D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).240C2^4 | 320,1368 |
(C2xC10).241C24 = C42.155D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).241C2^4 | 320,1369 |
(C2xC10).242C24 = C42.156D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).242C2^4 | 320,1370 |
(C2xC10).243C24 = C42.157D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).243C2^4 | 320,1371 |
(C2xC10).244C24 = C42.158D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).244C2^4 | 320,1372 |
(C2xC10).245C24 = C42.159D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).245C2^4 | 320,1373 |
(C2xC10).246C24 = C42.160D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).246C2^4 | 320,1374 |
(C2xC10).247C24 = D5xC42:2C2 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).247C2^4 | 320,1375 |
(C2xC10).248C24 = C42:23D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).248C2^4 | 320,1376 |
(C2xC10).249C24 = C42:24D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).249C2^4 | 320,1377 |
(C2xC10).250C24 = C42.189D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).250C2^4 | 320,1378 |
(C2xC10).251C24 = C42.161D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).251C2^4 | 320,1379 |
(C2xC10).252C24 = C42.162D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).252C2^4 | 320,1380 |
(C2xC10).253C24 = C42.163D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).253C2^4 | 320,1381 |
(C2xC10).254C24 = C42.164D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).254C2^4 | 320,1382 |
(C2xC10).255C24 = C42:25D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).255C2^4 | 320,1383 |
(C2xC10).256C24 = C42.165D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).256C2^4 | 320,1384 |
(C2xC10).257C24 = C42.166D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).257C2^4 | 320,1385 |
(C2xC10).258C24 = D5xC4:1D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).258C2^4 | 320,1386 |
(C2xC10).259C24 = C42:26D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).259C2^4 | 320,1387 |
(C2xC10).260C24 = C42.238D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).260C2^4 | 320,1388 |
(C2xC10).261C24 = D20:11D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).261C2^4 | 320,1389 |
(C2xC10).262C24 = Dic10:11D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).262C2^4 | 320,1390 |
(C2xC10).263C24 = C42.168D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).263C2^4 | 320,1391 |
(C2xC10).264C24 = C42:28D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).264C2^4 | 320,1392 |
(C2xC10).265C24 = Dic10:8Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).265C2^4 | 320,1393 |
(C2xC10).266C24 = Dic10:9Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).266C2^4 | 320,1394 |
(C2xC10).267C24 = D5xC4:Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).267C2^4 | 320,1395 |
(C2xC10).268C24 = C42.171D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).268C2^4 | 320,1396 |
(C2xC10).269C24 = C42.240D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).269C2^4 | 320,1397 |
(C2xC10).270C24 = D20:12D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).270C2^4 | 320,1398 |
(C2xC10).271C24 = D20:8Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).271C2^4 | 320,1399 |
(C2xC10).272C24 = C42.241D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).272C2^4 | 320,1400 |
(C2xC10).273C24 = C42.174D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).273C2^4 | 320,1401 |
(C2xC10).274C24 = D20:9Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).274C2^4 | 320,1402 |
(C2xC10).275C24 = C42.176D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).275C2^4 | 320,1403 |
(C2xC10).276C24 = C42.177D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).276C2^4 | 320,1404 |
(C2xC10).277C24 = C42.178D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).277C2^4 | 320,1405 |
(C2xC10).278C24 = C42.179D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).278C2^4 | 320,1406 |
(C2xC10).279C24 = C42.180D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).279C2^4 | 320,1407 |
(C2xC10).280C24 = C22xC4xDic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).280C2^4 | 320,1454 |
(C2xC10).281C24 = C22xC10.D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).281C2^4 | 320,1455 |
(C2xC10).282C24 = C2xC20.48D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).282C2^4 | 320,1456 |
(C2xC10).283C24 = C22xC4:Dic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).283C2^4 | 320,1457 |
(C2xC10).284C24 = C2xC23.21D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).284C2^4 | 320,1458 |
(C2xC10).285C24 = C22xD10:C4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).285C2^4 | 320,1459 |
(C2xC10).286C24 = C2xC4xC5:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).286C2^4 | 320,1460 |
(C2xC10).287C24 = C2xC23.23D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).287C2^4 | 320,1461 |
(C2xC10).288C24 = C2xC20:7D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).288C2^4 | 320,1462 |
(C2xC10).289C24 = C24.72D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).289C2^4 | 320,1463 |
(C2xC10).290C24 = C2xD4xDic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).290C2^4 | 320,1467 |
(C2xC10).291C24 = C2xC23.18D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).291C2^4 | 320,1468 |
(C2xC10).292C24 = C2xC20.17D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).292C2^4 | 320,1469 |
(C2xC10).293C24 = C24.38D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).293C2^4 | 320,1470 |
(C2xC10).294C24 = C2xC23:D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).294C2^4 | 320,1471 |
(C2xC10).295C24 = C2xC20:2D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).295C2^4 | 320,1472 |
(C2xC10).296C24 = D4xC5:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).296C2^4 | 320,1473 |
(C2xC10).297C24 = C2xDic5:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).297C2^4 | 320,1474 |
(C2xC10).298C24 = C2xC20:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).298C2^4 | 320,1475 |
(C2xC10).299C24 = C24:8D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).299C2^4 | 320,1476 |
(C2xC10).300C24 = C24.41D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).300C2^4 | 320,1477 |
(C2xC10).301C24 = C24.42D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).301C2^4 | 320,1478 |
(C2xC10).302C24 = C2xDic5:Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).302C2^4 | 320,1482 |
(C2xC10).303C24 = C2xQ8xDic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).303C2^4 | 320,1483 |
(C2xC10).304C24 = C10.422- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).304C2^4 | 320,1484 |
(C2xC10).305C24 = C2xD10:3Q8 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).305C2^4 | 320,1485 |
(C2xC10).306C24 = C2xC20.23D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).306C2^4 | 320,1486 |
(C2xC10).307C24 = Q8xC5:D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).307C2^4 | 320,1487 |
(C2xC10).308C24 = C10.442- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).308C2^4 | 320,1488 |
(C2xC10).309C24 = C10.452- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).309C2^4 | 320,1489 |
(C2xC10).310C24 = C10.1042- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).310C2^4 | 320,1496 |
(C2xC10).311C24 = C10.1052- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).311C2^4 | 320,1497 |
(C2xC10).312C24 = C4oD4xDic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).312C2^4 | 320,1498 |
(C2xC10).313C24 = C10.1062- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).313C2^4 | 320,1499 |
(C2xC10).314C24 = (C2xC20):15D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).314C2^4 | 320,1500 |
(C2xC10).315C24 = C10.1452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).315C2^4 | 320,1501 |
(C2xC10).316C24 = C10.1462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).316C2^4 | 320,1502 |
(C2xC10).317C24 = C10.1072- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).317C2^4 | 320,1503 |
(C2xC10).318C24 = (C2xC20):17D4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).318C2^4 | 320,1504 |
(C2xC10).319C24 = C10.1472+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).319C2^4 | 320,1505 |
(C2xC10).320C24 = C10.1482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).320C2^4 | 320,1506 |
(C2xC10).321C24 = C22xC23.D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).321C2^4 | 320,1511 |
(C2xC10).322C24 = C2xC24:2D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).322C2^4 | 320,1512 |
(C2xC10).323C24 = C23xDic10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).323C2^4 | 320,1608 |
(C2xC10).324C24 = D5xC23xC4 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).324C2^4 | 320,1609 |
(C2xC10).325C24 = C23xD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).325C2^4 | 320,1610 |
(C2xC10).326C24 = C22xC4oD20 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).326C2^4 | 320,1611 |
(C2xC10).327C24 = C2xD4:6D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 80 | | (C2xC10).327C2^4 | 320,1614 |
(C2xC10).328C24 = C22xQ8xD5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).328C2^4 | 320,1615 |
(C2xC10).329C24 = C22xQ8:2D5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).329C2^4 | 320,1616 |
(C2xC10).330C24 = C2xQ8.10D10 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 160 | | (C2xC10).330C2^4 | 320,1617 |
(C2xC10).331C24 = C24xDic5 | φ: C24/C23 → C2 ⊆ Aut C2xC10 | 320 | | (C2xC10).331C2^4 | 320,1626 |
(C2xC10).332C24 = C22:C4xC2xC10 | central extension (φ=1) | 160 | | (C2xC10).332C2^4 | 320,1514 |
(C2xC10).333C24 = C4:C4xC2xC10 | central extension (φ=1) | 320 | | (C2xC10).333C2^4 | 320,1515 |
(C2xC10).334C24 = C10xC42:C2 | central extension (φ=1) | 160 | | (C2xC10).334C2^4 | 320,1516 |
(C2xC10).335C24 = D4xC2xC20 | central extension (φ=1) | 160 | | (C2xC10).335C2^4 | 320,1517 |
(C2xC10).336C24 = Q8xC2xC20 | central extension (φ=1) | 320 | | (C2xC10).336C2^4 | 320,1518 |
(C2xC10).337C24 = C4oD4xC20 | central extension (φ=1) | 160 | | (C2xC10).337C2^4 | 320,1519 |
(C2xC10).338C24 = C5xC22.11C24 | central extension (φ=1) | 80 | | (C2xC10).338C2^4 | 320,1520 |
(C2xC10).339C24 = C5xC23.32C23 | central extension (φ=1) | 160 | | (C2xC10).339C2^4 | 320,1521 |
(C2xC10).340C24 = C5xC23.33C23 | central extension (φ=1) | 160 | | (C2xC10).340C2^4 | 320,1522 |
(C2xC10).341C24 = C10xC22wrC2 | central extension (φ=1) | 80 | | (C2xC10).341C2^4 | 320,1523 |
(C2xC10).342C24 = C10xC4:D4 | central extension (φ=1) | 160 | | (C2xC10).342C2^4 | 320,1524 |
(C2xC10).343C24 = C10xC22:Q8 | central extension (φ=1) | 160 | | (C2xC10).343C2^4 | 320,1525 |
(C2xC10).344C24 = C10xC22.D4 | central extension (φ=1) | 160 | | (C2xC10).344C2^4 | 320,1526 |
(C2xC10).345C24 = C5xC22.19C24 | central extension (φ=1) | 80 | | (C2xC10).345C2^4 | 320,1527 |
(C2xC10).346C24 = C10xC4.4D4 | central extension (φ=1) | 160 | | (C2xC10).346C2^4 | 320,1528 |
(C2xC10).347C24 = C10xC42.C2 | central extension (φ=1) | 320 | | (C2xC10).347C2^4 | 320,1529 |
(C2xC10).348C24 = C10xC42:2C2 | central extension (φ=1) | 160 | | (C2xC10).348C2^4 | 320,1530 |
(C2xC10).349C24 = C5xC23.36C23 | central extension (φ=1) | 160 | | (C2xC10).349C2^4 | 320,1531 |
(C2xC10).350C24 = C10xC4:1D4 | central extension (φ=1) | 160 | | (C2xC10).350C2^4 | 320,1532 |
(C2xC10).351C24 = C10xC4:Q8 | central extension (φ=1) | 320 | | (C2xC10).351C2^4 | 320,1533 |
(C2xC10).352C24 = C5xC22.26C24 | central extension (φ=1) | 160 | | (C2xC10).352C2^4 | 320,1534 |
(C2xC10).353C24 = C5xC23.37C23 | central extension (φ=1) | 160 | | (C2xC10).353C2^4 | 320,1535 |
(C2xC10).354C24 = C5xC23:3D4 | central extension (φ=1) | 80 | | (C2xC10).354C2^4 | 320,1536 |
(C2xC10).355C24 = C5xC22.29C24 | central extension (φ=1) | 80 | | (C2xC10).355C2^4 | 320,1537 |
(C2xC10).356C24 = C5xC23.38C23 | central extension (φ=1) | 160 | | (C2xC10).356C2^4 | 320,1538 |
(C2xC10).357C24 = C5xC22.31C24 | central extension (φ=1) | 160 | | (C2xC10).357C2^4 | 320,1539 |
(C2xC10).358C24 = C5xC22.32C24 | central extension (φ=1) | 80 | | (C2xC10).358C2^4 | 320,1540 |
(C2xC10).359C24 = C5xC22.33C24 | central extension (φ=1) | 160 | | (C2xC10).359C2^4 | 320,1541 |
(C2xC10).360C24 = C5xC22.34C24 | central extension (φ=1) | 160 | | (C2xC10).360C2^4 | 320,1542 |
(C2xC10).361C24 = C5xC22.35C24 | central extension (φ=1) | 160 | | (C2xC10).361C2^4 | 320,1543 |
(C2xC10).362C24 = C5xC22.36C24 | central extension (φ=1) | 160 | | (C2xC10).362C2^4 | 320,1544 |
(C2xC10).363C24 = C5xC23:2Q8 | central extension (φ=1) | 80 | | (C2xC10).363C2^4 | 320,1545 |
(C2xC10).364C24 = C5xC23.41C23 | central extension (φ=1) | 160 | | (C2xC10).364C2^4 | 320,1546 |
(C2xC10).365C24 = C5xD42 | central extension (φ=1) | 80 | | (C2xC10).365C2^4 | 320,1547 |
(C2xC10).366C24 = C5xD4:5D4 | central extension (φ=1) | 80 | | (C2xC10).366C2^4 | 320,1548 |
(C2xC10).367C24 = C5xD4:6D4 | central extension (φ=1) | 160 | | (C2xC10).367C2^4 | 320,1549 |
(C2xC10).368C24 = C5xQ8:5D4 | central extension (φ=1) | 160 | | (C2xC10).368C2^4 | 320,1550 |
(C2xC10).369C24 = C5xD4xQ8 | central extension (φ=1) | 160 | | (C2xC10).369C2^4 | 320,1551 |
(C2xC10).370C24 = C5xQ8:6D4 | central extension (φ=1) | 160 | | (C2xC10).370C2^4 | 320,1552 |
(C2xC10).371C24 = C5xC22.45C24 | central extension (φ=1) | 80 | | (C2xC10).371C2^4 | 320,1553 |
(C2xC10).372C24 = C5xC22.46C24 | central extension (φ=1) | 160 | | (C2xC10).372C2^4 | 320,1554 |
(C2xC10).373C24 = C5xC22.47C24 | central extension (φ=1) | 160 | | (C2xC10).373C2^4 | 320,1555 |
(C2xC10).374C24 = C5xD4:3Q8 | central extension (φ=1) | 160 | | (C2xC10).374C2^4 | 320,1556 |
(C2xC10).375C24 = C5xC22.49C24 | central extension (φ=1) | 160 | | (C2xC10).375C2^4 | 320,1557 |
(C2xC10).376C24 = C5xC22.50C24 | central extension (φ=1) | 160 | | (C2xC10).376C2^4 | 320,1558 |
(C2xC10).377C24 = C5xQ8:3Q8 | central extension (φ=1) | 320 | | (C2xC10).377C2^4 | 320,1559 |
(C2xC10).378C24 = C5xQ82 | central extension (φ=1) | 320 | | (C2xC10).378C2^4 | 320,1560 |
(C2xC10).379C24 = C5xC22.53C24 | central extension (φ=1) | 160 | | (C2xC10).379C2^4 | 320,1561 |
(C2xC10).380C24 = C5xC22.54C24 | central extension (φ=1) | 80 | | (C2xC10).380C2^4 | 320,1562 |
(C2xC10).381C24 = C5xC24:C22 | central extension (φ=1) | 80 | | (C2xC10).381C2^4 | 320,1563 |
(C2xC10).382C24 = C5xC22.56C24 | central extension (φ=1) | 160 | | (C2xC10).382C2^4 | 320,1564 |
(C2xC10).383C24 = C5xC22.57C24 | central extension (φ=1) | 160 | | (C2xC10).383C2^4 | 320,1565 |
(C2xC10).384C24 = C5xC22.58C24 | central extension (φ=1) | 320 | | (C2xC10).384C2^4 | 320,1566 |
(C2xC10).385C24 = Q8xC22xC10 | central extension (φ=1) | 320 | | (C2xC10).385C2^4 | 320,1630 |
(C2xC10).386C24 = C4oD4xC2xC10 | central extension (φ=1) | 160 | | (C2xC10).386C2^4 | 320,1631 |
(C2xC10).387C24 = C10x2+ 1+4 | central extension (φ=1) | 80 | | (C2xC10).387C2^4 | 320,1632 |
(C2xC10).388C24 = C10x2- 1+4 | central extension (φ=1) | 160 | | (C2xC10).388C2^4 | 320,1633 |